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Abstract—The challenges of energy efficiency and comfort
management of intelligent homes and buildings are usually tack-
led with methods relying on historical data and a large number
sensors. In this paper, we propose a real-time human activity-
based energy management system (HAEMS), which tracks and
processes human movement, and achieves device control based on
real-time data with a significantly reduced number of sensors. A
human activity detection algorithm and a model predictive con-
trol scheme are developed and implemented to optimally manage
energy. A multi-objective optimization problem is formulated to
minimize electricity cost and control temperature for thermal
comfort. The HAEMS is deployed in a scaled-down laboratory
setup and the performance is evaluated in an embedded system
and hardware environment. Experimental results show that this
system is able to optimize both electricity cost and thermal
comfort.

Index Terms—Energy Management System, Human Activity
Detection, Model Predictive Control.

I. INTRODUCTION

According to a report from the Department of Energy,
residential buildings account for about 38% of the electricity
consumption in the US in 2016 [1], representing a major
opportunity for energy efficiency and energy management
improvements. The need to better utilize electrical energy and
at the same time maintain customer satisfaction and comfort
calls for novel designs of energy management systems.

Intelligent buildings focusing on energy efficiency and com-
fort management based on user activity have been discussed
in previous literature. Binary detection of residential building
occupancy using hidden Markov models has been proposed
[2], where a method is developed that achieves energy saving
by determining the probability of the residents being at home.
In order to reduce electricity usage, reference [3] proposes an
algorithm to control a programmable home thermostat using
occupancy data collected by sensors deployed in rooms. A
soft-computing method using neural networks for illumination
control is developed in [4]. In order to track individual energy
consumption, authors in [5] use human-equipped proximity
sensors that interact with other sensors deployed near home
appliances. The data is used to report the energy consumption
profile of each appliance for the users. In [6], a sliding window
approach, based on streaming data from a large number of
sensors placed in a limited space, is developed to perform

activity recognition for residential building control. References
[7] and [8] have proposed a system that uses state estimation
methods and a high fidelity electro-thermal model of a house
to monitor the actual temperatures of the various rooms of a
house. The approach provides the real time model of the house
as well as the operating conditions of the house which are
used to define an optimization problem. Zero inconvenience
constraints are added to the optimization problem. Its solution
provides the optimal control of house resources to optimize
the cost of electricity without inconveniencing the house
occupants.

Although a lot of work has been done in this area, previous
approaches mostly rely on pre-collected data [2]–[4] or use
too many sensors, most of which are temperature or proximity
sensors [5], [6]. In this paper, we propose a real-time human
activity-based energy management system (HAEMS) with a
significantly reduced number of sensors. In this paper human
activity is measured by human movement. By utilizing human
movement data in real time based on a motion sensing input
device, the system is able to respond more accurately to
changes in activity driving energy control. In addition, the
installation of the system can be streamlined, since users may
already have the sensor at home. In order to demonstrate the
proposed technology, we use Microsoft Kinect as the motion
sensing input device. The Kinect is coupled with a control
logic that manages the temperature for users’ comfort and
simultaneously help them save money on electricity bills.
This technology can be applied directly to improve gaming
experience for gamers, by adjusting the room temperature in
a predictive manner when they use Kinect to play games.

In Section II of this paper, we present an overview of
the HAEMS and a scaled-down hardware testbed to evaluate
the performance of the proposed system. Section III provides
an introduction to Random Forest Regression (RFR) and
applies it to process human activity intensity data. In Section
IV, we discuss the model predictive control (MPC) scheme,
which utilizes the information in real time to control the
scaled-down system. The experimental hardware setup and
system parameters are presented in Section V. In Section VI,
the performance of the system and experimental results are
discussed. Section VII presents conclusions and future work.



II. SYSTEM OVERVIEW

Let us consider a residential building with an air conditioner
(AC). The AC is used to cool down the building for comfort
of the residents. Let us assume that the outdoor ambient
temperature is higher than the indoor temperature. There
is heat exchange between indoor and outdoor environments
through the walls, which increases the indoor temperature.

Fig. 1. HAEMS design overview.

In this paper, we use a small system containing a heat source
and a cooler to simulate the cooling of a home environment,
as illustrated in Fig. 1. According to the distributed control
architecture for smart grid [9], the components in HAEMS are
categorized into five layers as shown in Table I. Note that there
are only two sensors in this implementation, which makes the
system cheap and easy to install.

TABLE I. HAEMS layers overview.

Layers Components
Market Layer Electricity Price Function, Cost Optimization

System Control Layer Model Predictive Control
Cyber Layer Wi-Fi, LAN

Local Control Layer Kinect, Temperature Sensor, Raspberry Pi
Device Layer Cooler

We use the heating effect of a resistor connected to a
power supply to simulate the increase in indoor temperature.
The resistor is attached to a hydro CPU cooler, as a first
approximation of an AC system. This scaled-down physical
system is driven by the following closed loop control. The
input of the HAEMS is the temperature set-point that follows
human activity intensity detected by a Kinect. The feedback is
the controlled temperature that is monitored by a temperature
sensor. Based on these data and a pre-acquired electricity price
function, a model predictive control (MPC) scheme is designed
to minimize the cost of energy consumption of the cooler
over a specified time range. The output of this algorithm is
a control signal that adjusts the speed of the cooler fans. A
detailed system description of the HAEMS is given in the next

sections. In summary, we need to perform the following steps
to achieve real-time energy management.

1) Detect human activity with a Kinect.
2) Identify the model to be controlled and predict the

necessary control actions of the system using the MPC
by optimizing electricity cost and thermal comfort.

3) Implement the optimal control actions.

III. HUMAN ACTIVITY DETECTION

Different from the traditional home energy management
system (HEMS), HAEMS uses human activity intensity as
a key factor to adjust the control of the system. Due to
high household availability and relatively low price, we use
a Kinect sensor to capture the human skeleton information
with Random Forest Regression (RFR) algorithm.

Fig. 2. Human activity detection module overview.

A general overview of the detection module is provided in
Fig. 2. In the training phase, movements of human joints are
captured and labeled with corresponding levels of intensity.
These data are fed into the detection algorithm to tune the
model parameters. Once the training is done, the human
activity detection module is ready for on-line inference. Real-
time skeleton data are acquired in a speed of 30 fps (frames
per second) and transformed into human joint trajectories,
which are used as inputs of the pre-trained detection algorithm.
As a result, the temperature set-point Tset is generated for
temperature control.

A. Joint Trajectory

Human raw skeleton data are captured frame by frame from
the Kinect. Each frame contains 3-dimensional information of
25 joints of a body, including head, neck, shoulders, elbows,
wrists, hands, spine (shoulder, mid, and base), hips, knees,
ankles, and feet.

In this study, 11 joints are selected for further analysis,
including head, shoulders, elbows, wrists, hips, and ankles.
The movement of these joints can be used to extract the human
activity intensity, which is a positive real number indicating
how much the person has moved in the past time interval.
The more the target person moves per unit time, the higher
the intensity. Examples of time-series trajectories from 4 joints
are provided in Fig. 3.

With 11 joints involved, the incoming raw data are stored
in a 33 × n matrix M , where 33 represents 3-dimensional
information from 11 joints and n is the number of frames. In
order to get rid of noises, a sliding window Gaussian filter is
implemented to smooth the trajectories. The window length l
is set to 5 in this case. The convolution kernel c of this filter



Fig. 3. Time-series 3-dimensional trajectory of 4 joints.

is chosen to be 0.0625 · [1, 4, 6, 4, 1]. The kernel is applied to
every row of M by calculating the dot products. The smoothed
trajectory data are saved in a new matrix M̃ , which is fed to
the detection algorithm every 0.5 seconds. Each element of
M̃ is obtained in equation (1), where i and j are the row and
column indices, respectively.

M̃i,j =

5∑
k=1

ck ×Mi,j−3+k (1)

B. Detection Algorithm

The RFR algorithm is adopted here to detect human activity
intensity given the joint trajectory matrix M̃ . RFR is an
ensemble learning method that works by forming a number
of decision trees and generating the output from the mean
prediction of each individual tree. The detailed algorithm of
RFR is provided in Algorithm 1. For model training, 100
samples of M̃ are created. For each M̃ , a relative move-
ment matrix is calculated. Then, ntree bootstrap subsets are
randomly sampled with replacement. These subsets are used
to grow regression trees. Starting from a single node, the
algorithm searches over all binary splits of all variables for
the one that will reduce standard deviation (SD) as much as
possible. If the largest reduction (SDRmax) in SD is less than
some threshold δ, the growth stops. Otherwise, the node is
split into two new nodes where the growth procedure repeats
recursively.

During the on-line inference, a coming M̃ is fed into the
pre-trained ntree regression trees. The temperature set-point
Tset is computed by taking average of the predictions zk ∈
[0, 1] and doing linear transformation, which is given by

Tset = Tbase − Trange ×
1

ntree

ntree∑
k=1

zk (2)

where Tbase and Trange are the base temperature and set-point
range, respectively. It can be noticed from (2) that less intensity
yields a higher Tset.

Currently, the detection algorithm can only recognize the
activity of one person. We plan to extend the functionality to
process more people in the future.

ALGORITHM 1: Random Forest Regression

Input: Joint trajectory matrices M̃
Output: Temperature set-point Tset

Training:
ntree = 10; δ = 0.1;
Calculate relative movement matrix R by

Ri,j = 1
n−1

∑n−1
k=1 |M̃i,j+1 − M̃i,j |

Randomly draw ntree bootstrap samples from original data;
for each bootstrap iteration do

// Grow a regression tree
for each node in tree do

while SDRmax > δ do
for each binary split s do

SDR = SD(original)−
∑

s∈X P (s) · SD(s)
end
Search for the split with maximum SDRmax;

end
end

end
Inference:
Take average from predictions of ntree trees;
Transfer human activity intensity to temperature set-point Tset;

IV. MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is utilized to control the
temperature. This is a closed-loop control based on iterative,
finite-horizon optimization of a model. At each time step k,
the states are measured and a multi-objective mixed integer
linear programming (MILP) problem takes place for a short-
time horizon in the future [k, k + n], where n is the number
of time steps in the horizon. Then, only the first step of the
control strategy is implemented. After that, the horizon shifts
forward by one time step and the process is repeated.

With the MPC, we want to minimize electricity cost of the
cooler over a certain time period. Meanwhile, the temperature
controlled should be kept in or driven to a range for the
comfort of customers. We use the MPC for more accurate
control of the temperature, as it recomputes the optimal control
signals after periodically resetting the initial conditions of the
optimization problem to the true states of the system.

A. System Identification

The fan speed of the hydro CPU cooler is controlled by
a pulse-width modulation (PWM) signal. The larger the duty
cycle of the PWM signal, the faster the fans spin, and thus
the quicker the temperature drops. In order to run the MPC,
we have to acquire the model of the physical system and its
parameters, so system identification is needed. In this paper,
we assume that the system is linear. Denote t as time, D as
duty cycle, T as temperature, and P as power consumption
of the cooler. Equations ∂T/∂t = β0 and ∂/∂t = γD + β1
demonstrate the temperature variation when the cooler is OFF
and ON, respectively. Let P = 0 when the cooler is OFF and
P = αD + ϕ when the cooler is ON.

We did experiments on the physical system to determine
parameters α, β0, β1, γ, and ϕ by curve fitting the recorded
data.



B. Electricity Cost Minimization

The first objective is to minimize the energy consumption
cost of the cooler. The objective is given by

min
n∑

k=1

ck(αDk + ϕuk)∆t (3)

where ck is the electricity price at time step k and ∆t is
the time interval between two consecutive time steps. Binary
variable u is introduced to denote the OFF and ON status of
the cooler with values 0 and 1, respectively.

With the model parameters pre-acquired from Section IV-A,
the relationship between temperature and duty cycle can be
written as

Tk+1 = Tk + γDk∆t+ (β1 − β0)uk∆t+ β0∆t (4)

where k = 1, . . . , n. At the first step of each optimization
horizon, the measurements provide the following initial values,
where subscript init represents the initialization.

D1 = Dinit, T1 = Tinit, u1 = uinit (5)

It is assumed that the change of duty cycle between consec-
utive steps is limited by ε and D ∈ [Dmin, Dmax] when the
cooler is ON. Hence, the following constraints are required.

− ε ≤ Dk+1 −Dk ≤ ε ∀k = 1, . . . , n− 1 (6a)
Dminuk ≤ Dk ≤ Dmaxuk ∀k = 2, . . . , n (6b)

C. Temperature Control

The second objective of the optimization problem is to keep
the temperature within a desired range [Tset − δ, Tset + δ] or
pull the temperature towards the range if it is outside, where
Tset is the temperature set-point generated from the human
activity intensity detected.

We consider two possibilities, when T is within the desired
range and when T is not. Specify binary variable xk, ∀k =
2, . . . , n+ 1 so that

xk =

{
0 Tset − δ ≤ Tk ≤ Tset + δ
1 otherwise

(7)

Since xk = 1 introduces a disjunctive constraint, yk ∈ {0, 1}
is used to give the following statement.

yk =

{
0 Tk > Tset + δ
1 Tk < Tset − δ

(8)

Note that (8) only matters when xk = 1. By using the big
M method, (7) and (8) impose the following constraints on
temperature for k = 2, . . . , n+ 1.

Tset − δ −M1xk ≤ Tk ≤ Tset + δ +M1xk (9a)
Tk ≥ Tset + δ −M1(1− xk)−M2yk (9b)
Tk ≤ Tset − δ +M1(1− xk) +M2(1− yk) (9c)

M1 and M2 are large values chosen carefully so that extra
constraints are not imposed. Now consider xk = 1, meaning
Tk is outside of the specified range and the goal is to pull the

temperature towards it. This yields a minimax problem given
by

min max{Tk − Tset − δ, Tset − δ − Tk} (10)

which for k = 2, . . . , n+ 1 is equivalent to the minimization
problem given in (11). Again, the big M method is utilized
and M3 is a large number selected carefully.

min hk (11a)
s.t. Tset − δ − Tk −M3(1− xk) ≤ hk (11b)

Tk − Tset − δ −M3(1− xk) ≤ hk (11c)
hk ≥ 0 (11d)

D. Optimization Problem

A multi-objective optimization problem is formulated in this
section. As described in Section IV-B and Section IV-C, the
objectives of the optimization problem for the MPC include
cost minimization and temperature control. We assign a heavy
weight w on variable h so that it does not affect the control
strategy generated by minimizing the energy consumption
cost. Hence, together with the objective given in (3), the
overall optimization problem is an MILP problem that can
be formulated as

min
n∑

k=1

ck(αDk + ϕuk)∆t+

n+1∑
k=2

(whk) (12a)

s.t. uk, xk, yk ∈ {0, 1} (12b)
(4)− (6), (9), (11b)− (11d)

This optimization problem is implemented in the algorithm
to run at every time step. The model states in the first step (k =
1) of each horizon are the initial values measured, while those
in the second step (k = 2) are implemented as commands.
The algorithm is implemented in MATLAB on a PC.

For future improvements, the model can be assumed
quadratic in system identification and quadratic programming
may be considered in the control process to increase the
accuracy of temperature estimation.

V. EXPERIMENTAL SETUP

In this section, the hardware testbed shown in Fig. 4 is
discussed in detail. The scaled-down system is implemented
in this paper because it captures the main features of a home
environment. The lower part of Fig. 4 shows the main parts of
the system. The average heating of a room can be simplified
to a heat source, while the cooler works similarly to a home
AC system.

A. Heat Source and Cooling System

In the experimental setting, the heat source is simulated by
resistors, which are energized using a DC power supply. The
power consumption of the resistors is kept constant during the
experiment. The cooler is a hydro CPU cooler, which consists
of a pump and two fans. In order to reduce the influence of air
temperature, the heat source and the cooler are both attached
to a heat sink. The temperature of this heat sink can be viewed
as the room temperature in a home environment.



Fig. 4. Experimental hardware testbed.

B. Local Control

In this experiment, DS18B20 [10] measures the temperature
of the heat sink in real time. This digital temperature sensor
measures temperature from −55◦C to +125◦C, covering the
temperature range in the test. Raspberry Pi plays a key role
in the local control layer. First, it collects data from the
temperature sensor via 1-Wire® Interface, and pre-processes
the data to remove bad data and noise. Then it generates
PWM to control the cooler fans. Raspberry Pi also exchanges
data with PC via Wi-Fi and TCP/IP. The application layer
protocol of this connection is remote procedure call (RPC).
RPC allows computer programs to call procedures to execute
in Raspberry Pi. The operating system running on Raspberry
Pi is Raspbian, a Debian-based Linux distribution. The human
motion detection is fulfilled by Kinect, which is connected
with PC.

C. Optimization Parameters

The system is tested over 100 prediction horizons, with
each horizon containing 7 time steps (5 sec/step). Tset is
obtained from (2) in real time within a range between 40◦C
to 45◦C and kept constant in every 5 steps. This temperature
range is chosen based on the features of the heat source. The
electricity price function is randomly generated. A bound of
±1◦C relative to Tset is used. Other important parameters used
in the experiment are provided in TABLE II.

TABLE II. Experimental system parameters.

Parameters Values Parameters Values
α 2.781 W γ -0.04929◦C/s
ϕ 1.02 W ε 0.3
β0 0.010148◦C/s Dmin 0.2
β1 -0.03702◦C/s Dmax 0.9

VI. RESULTS AND DISCUSSION

Fig. 5 shows the performance of the proposed system.
The estimated and measured temperature waveforms behave
similarly and follow the set-point Tset generated by the
human activity detection algorithm. As shown in Fig. 5(a),
the objective described in Section IV-C has been achieved.
The temperature is kept within the desired range, and drawn
towards the range when it is outside. Fig. 5(b) displays the duty
cycle command from the optimization. Due to the optimization
constraint (6b), the variation of duty cycle in adjacent steps is
limited to 0.3 to prevent the fan speed from changing abruptly.
When the temperature enters the acceptable range, the duty
cycle remains zero. Additionally, the optimization uses the
electricity price to regulate the control signal to make sure the
total cost is low, which is consistent with the goal of electricity
cost minimization defined in Section IV-B. Fig. 5(c) shows
the normalized electricity price considered in this project. The
base value of price is 5.65 ¢/kWh. In the high price period
(time steps 40-60), the temperature is kept near the upper
bound, which helps minimize the cost.

Fig. 5. Experimental results.

Unlike our approach of both optimizing electricity cost and
thermal comfort (Case 1), many existing papers consider only
controlling temperature for comfort without taking costs into
account [11], [12]. Hence, simulations using only a comfort
objective function (Case 2) were conducted as well. In this
case, the optimization objective in (12a) becomes

min
n+1∑
k=2

(whk) (13)

The results are compared with our approach proposed in
(12). In the two simulation cases, everything is the same except
for the optimization objective. In each iteration, the initial



values are extracted from the second step of the solutions
of the previous horizon. The comparison between the two
cases are given in Fig. 6. From Fig. 6(a), observations suggest
that Case 2 tends to give a lower temperature compared to
Case 1. This is consistent with the bar graph in Fig. 6(b)
as Case 2 sees larger duty cycles. Hence, it costs more over
the 100 time steps. With the base price being 5.65 ¢/kWh
and the price curve being Fig. 5(c), the total electricity costs
for Case 1 and Case 2 are 0.000247 ¢ and 0.000281 ¢,
respectively. The difference is very small because we are
using a scaled-down system and the total operating duration
is 500 seconds. Note that the percentage reduction in total
cost from Case 2 to Case 1 is about 12.1%. If we consider an
actual household AC running for 24 hours, the reduction in
cost is quite significant when optimizing cost and comfort is
compared to optimizing comfort only. It can also be noticed
from Fig. 6(b) that the number of ON/OFF fan switchings
is larger in Case 1. This is reasonable as the cooler operates
around the temperature upper bound. The fan is required to
switch between ON and OFF more frequently according to the
designed controller. This would help reducing the maximum
temperature seen on the corresponding distribution transformer
[13]. Hence, our proposed method is preferable compared
to comfort optimization. We expect to test our method in a
more realistic environment and compare the results with other
existing methods in future work.

Fig. 6. Case comparison.

VII. CONCLUSIONS

In this paper, we propose a real-time human activity-based
energy management system (HAEMS) with a significantly
reduced number of sensors. A human activity detection al-
gorithm and a model predictive control scheme are developed
and implemented. The system is deployed in a scaled-down
laboratory setup and the performance is evaluated in a hard-
ware environment.

The experimental results obtained in Section VI meet
the expectation of human activity detection and achieve the
objectives set by the optimization problem. Human activity
intensity is precisely reflected on the temperature set-point
input to the optimization problem. Both temperature control

and energy consumption cost minimization are realized in
real time. Moreover, compared to the method that solely
optimizes comfort, the proposed method not only achieves
thermal comfort, but also minimizes the total electricity cost.

The successful implementation of the HAEMS on this
scaled-down setup verifies the feasibility and effectiveness of
the proposed technology. In addition, our system has a low
deployment cost as it only requires the installation of a single
Kinect, which is already available in many households.

The team is planning two improvements on the proposed
technology. First, the human activity detection will be ex-
tended to more than one person. We expect to implement
the HAEMS in larger public areas such as gyms and office
buildings with more people involved, to achieve temperature
control and energy management intelligently. In this case,
more sensors may be required. Second, the concept could
be applied on other devices that measure customers’ health
condition or temperature directly, such as Fitbit and Apple
Watch. If those devices are used, the temperature could be
adjusted with more precision to meet individual customer’s
needs according to the data collected.
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